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INTRODUCTION

For geodetic, gerdynamical, and astronomical purposes,

two basic coordinate systems are needed: an inertial system

and an earth-fixed system. These two systems are related

through precession, nutation, and polar motion.

In order to relate these two systems in a precise

fashion, we need not only highly sophisticated observation

methods such as doppler, lunar laser, and VLBI observations,

but also very accurate theories, which take into account the

elasticity of the earth's mantle, as well as effects due to

the liquid core. A clear understanding of this complex matter

is a prerequisite also for practical work in this field.

The present report is intended as a systematic review

which presents the basic principles in a rather detailed

manner and is thus suitable as an introduction even for sci--

entists with little or no previous knowledge of the field.

The report is restricted to those theories which regard

the earth either as a rigid body, such as Kinoshita's recent

theory, or as a purely elastic solid, such as McClure's work,

or as a body consisting of a rigid mantle and a liquid core,

the so-called Poincar model. None of these models is fully

realistic, but each contains important features which form

a basis indispensable for understanding, and even for practi-

cally and numerically treating, a more realistic model con-

sisting of an elastic mantle and a liquid core. The consider-

ations of models of the latter kind, which is a complicated

and difficult subject,-wil be deferred to another report.

vi



Emphasis is on the treatment of an elastic earth on the

basis of Liouville's equation, leading to a systematic tneory

of polar motion, precession, and nutation of various axes

(rotation axis, angular momentum axis, figure axis, and the

so-called celestial reference pole), and on the eigenvalue

problem for rotation, leading to a similar theory for a

rigid earth and for the Poincarb model.

vii
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1. THE TIDAL POTENTIAL

Precession, nutation, forced polar motion, and earth

tides all have a common cause: the gravitational attraction

of sun and moon. Therefore, the potential of this attraction,

the tidal potential, plays a fundamental role in all these

phenomena.

Consider the gravitational attraction of the moon

(the sun can be treated analogously) at a point P on the

earth's surface which, to an accuracy sufficient for the

present purpose, can be represented by a sphere of radius a

(Fig. 1.1). The potential of this attraction at P is

G um a n  
I I

v G - n + P (co s(
]. n=o d n 1  n

P

moon

FIGURE 1.1. The tidal attraction
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on expanding 1,/i into a series of Legendre polynomials

P (cos ) (Heiskanen and Moritz, 1967, p. 33). The notations

are evident from Fig. 1.1; G is the gravitational constant

and is the moon's mass. We follow (Moritz, 1980, sec. 55).

The zero and first degree terms (n=O and 1) do not

cause genuine deformations and are therefore omitted. The

dominant term is n=2 ; higher-degree terms are small and will

be neglected. Thus there remains

v G - P:(cs ) o (1-2)

This spherical harmonic of second degree will, in the follow-

ing, be considered as our tidal potential.

Let us now express P,(cosi) in terms of the geocentric

spherical coordinates of P and of the moon's center. In the

usual earth-fixed equatorial system the point P has the co-

ordinates (",' ) where = 90'- is the polar distance of

P , denoting the geocentric latitude, and k is the geo-

centric longitude. Similarly, the moon has the coordinates

(p,h), where the polar distance is given by p = 90 , -

being the declination of the moon, and h denotes the Green-

wich hour angle of the moon, that is, the angle between the

Greenwich meridian and the meridian passing through the

moon's center. Contrary to astronomical usage, both and

h are counted positively towards east (Fig. 1.2).

Then P.(cosy) can be expressed by means of the decom-

position formula for spherical harmonics (Heiskanen and

Moritz, 1967, p. 33), and we obtain
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FIG. 1.2. Coordinates of P and of the moon.

V) + V1' ( 2 1-3)

with the zonal part

vg=Gu A L~ P-,-(cosE)PO(cosp) (1-4)

the tesseral part

V2dG' P-1 (cos )P- 1 (cosp) cos( ,-h) , K15

and the sectorial part

V-2 %- P,,<cos"))P,2 <cosp) cos2( *-h) 16)

d 3- ,. -



Tne Legendre functions are given Ly the wel - e. n an ex res s or.

( co0s- P 'cos ) = COS

P cos 3sin-.cos., P (cos ) 3sin

The coordinates of the moon, p and n, are functions

of the time since the moon moves along its orbit. Tnerefore,

eqs. (1-4) to I-6) can be considered spherical narmonics -n

and with coeffi-;ents that are functions of time. ,,Je

expand these functions into trigonometric series and write

the result in the form (Doodson, 1922; >cClure, 1973, p. 92):

V = V- - V + V

v = c- , Pn(cosn ) 1-3;

A .cos.! . t + + m .+ n-m '

Here n=2; m=0,1,2; the index d numbers moon (d=i, and sun

'd=2) , denotes the masses of moon and sun, and c de-

notes tne mean radii of the lunar and the solar orbit (con-

sidered with respect to the earth). As an example, we write

(1-2) explicitly for tne case i= , which will be of parti-

ruIar inportance-

V a (cos. )
,! i C S( -9

* ~. : sin( -,, t + '± ] + ')

_ .. . . .- - J



since cos(:,+-/2) = -sin . Omitting the subscripts

in the coefficients and considering the effect only of

the moon (or only of the sun) we have

V? 1  = -a P.- (cos,) A sin(,..t + ' ) i-!0

This simpler expression will frequently be used later..

We remark that the arguments are linear combinations

(with integer coefficients) of

s . ..... lunar mean longitude,

h . ..... solar mean longitude (not to be confused

with the hour angle as used above),

p........ mean longitude of lunar perigee (same re-

mark ) ,

N....... longitude of the mean ascending node of the

lunar orbit,

P ..... mean longitude of solar perigee,

S .... local mean lunar hour- angle.

that i s

't + +nm - in, = n: + n s + nh
nrnj~a nmi d

+ n~p + nN + n~p (1-I1

(Melchior, 1978, p. 3 3 ; McClure, 1973, p. 95).

tv Note that the sum is an infinite scries'

jir
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Well known are the tidal developements of Doodson (922)

and Cartwright and Tayler (1971); see also (Cartwright and

Edden, 1973). A new developement has been given by Heikkinen
(1978).
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2. ROTATION OF A RIGID BODY

The basic equation for the rotation of a rigid body

is very simple:

dH : C ,(2-I)

the derivative of the angular momentum H with respect to

time t equals the torque L ; both H and L are vectors,

which is indicated by underlining their symbols.

This equation holds in a nonrotating (inertial) coordi-

nate system; in a body-fixed coordinate system (which rotates

with the body), its equivalent is

3H

- + _ H = L (2-2

Here 3/;t denotes the time derivative in the body-fixed

system and w is the rotation vector whose direction coinci-

des with the instantaneous axis of rotation and whose magni-

tude is the angular velocity of rotation; the cross (*)
denotes the vector product of two vectors. These equations

can be found in any text on mechanics; cf. (Synge, 1960).

Eq. (2-1) is fundamental for precession dnd nutation,

which is the motion of the earth's axis in inertial space;

and (2-2) is basic for polar motion, which is the motion

of the earth's axis with respect to an earth-fixed coordinate

system.



The velocity v of a point of tne body is

v = x , ,'2-3)

x denoting the position vector of the point. This relation

is substituted into the equation defining the angular momen-
t u inl H ,

H x , v dM , (2-4

in which the integration is over the body, dM being the

mass element. The result is

H = C - (2-5

where C is a tensor (a 3x3 symmetric matrix), the

inertia tensor. The elements C., of the matrix C are

given by the formula

C = i x(Xk:. - x x )dM (2-6

using index notation: i,j,k run from 1 to 3 , xj = x,

x y, x = z are coordinates in a body-fixed Cartesian

System, i. = I if i=j and 0 if i/j (Kronecker delta),

and summation over repeated subscripts in a product (: in

the formula) is prescribed; cf. (Jeffreys, 1931).

Equivalent but somewhat more explicit is the form

- *L
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J -D -D

C = -D J -D

-D -D JX z "

where the diagonal elements are moment o t er , ,

J = 'y - + z )dM 2-

and tne of f-di agonal terms are products of i ert 3, 3 .

D = ;"F FxydM 2-

f the principal axes of inertia are chosen as ,:urod-

nate axes, then the tensor C assumes diagonal form:

A 0 a

C= 0 B 0 .- ,

0 0 C

A,B,C being the principal moments of inertia.

In this case, (2-5) reduces to
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we transform the first and second equation nto

+ 0
2 '2

- 0 -

of which the solution is

a : cos( lEt +

sin(.Et + )

with constants and From (2-16) we have

2 + , - = const. , 2-17

which is the equation of a circle. Toqether with -.=const.

this means that tne rotation a is descrwhes a circular cone

around the axis of symmetry (Fig. 2.1- The anqle of aper-

ture is about 0.2"; the period T is obtained from

FIGURE 2.1. Free polar motion tor a rigid eartn.

L i' •
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(?-14) as

, A 2-y2

T - A. 2 305 days (2-13)C-7
E

This Euler period would hold if the earth was a rigid body.

The fact toat toe actual period, tne Chandler period,is about

430 days. inda cates that the earth is not rigid.

Regarding terminology, the constant - defined oy

Z -14' ,jill he called the Euler frequency; it will play a

basic role throughout the present report.

StrictIy speakina, is an "angular frequency", wnere-

as toe name "fre.i uency" is usually reserved for the quantity

2- T

!iOwever, we shall consistently speak of frequency in the sense

of "angular frequency".

The coefficient in (2-16) is called amplitude,

3nd is the phase.

I I
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3. THE LIOUVILLE EQUATION

The basic equation (2-1)

dH
-( =1L

is really quite general. It holds for the rotation of an ar-

bitrary body, rigid or not (Truesdall and Toupin, 1960, p.531).

T'he underlying coordinate system is an inertial system which we

denote by XYZ or X,X2 X .

In a rotating system xyz or x x*x: which is attached

to the rotating nonrigid body in a way to be explained later,

the angular momentum equation takes again the form (2-2),

Hi

- + x x H = L , L-2,
3t

but (2-5) is generalized:

H =C + h 3-3

where n is a relative angular momentum defv;:ed by

h : ,f x u dm 3-4

Here u is the velocity with respect to the system x x-x-,
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which is related to the velocity v with respect to the

inertial system XXXX by

V = X+ U (3-5)

Equations (3-3) and (3-4) are readily obtained by

substituting (3-5) into the defining equation (2-4).

The inertia tensor C is again given by (2-6).

The meaning of these equations is easily understood.

If the earth (our rotating body will always be the earth)

is not rigid, then there is no coordinate system at which

all particles, of which the earth is composed, are at rest.

Thus they move with respect to our system x~x2 x 3 with

velocity u , which is considered small since it is zero for

a rigid body. Thus (3-5) differs from (2-3) by a non-

zero u. This relative velocity u causes the relative

angular momentum (3-4) to be, in general, different from

zero.

By substituting (3-3) into (3-2) we get

t (C . + .h) + w (C xh) = L , (3-)

dhich i' called the Liouville equation (Munk and Macdonald,

1960, p.10). This equation will be fundamental for the mathe-

matical description of polar motion for a nonrigid earth.

I ; '. .-
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It is now of basic importance that the axes x x x

can be chosen such that h=O. They have the property that

JJudM = minimum 3 7)

(Jeffreys, 1970, sec. 7.04) and are called Tisserand axes

(Munk and Macdonald, 1960, p.10). Then the basic equations

are formally the same as for a rigid body, eqs. (2-2) and

(2-5), but note that now the inertia tensor C, eq. (2-6),

will be a function of time since the shape of the body will,

in general, change with time. In the following we shall al-

ways use Tisserand axes.

This is convenient as long as one disregards relative

motions such as ocean currents and winds, as we shall do.

For the consideration of such effects see (Munk and Macdonald,

1960, p. 123; Lambeck and Cazenave, 1973, 1974; Capitaine,

1980; Lambeck, 1980).

Linearization. For Tisserand axes, the Liouville

equation (3-6 may be written

t (C w ) + _ x (C w ) L (3-8)

We shall now linearize this equation as follows (Munk and

Macdonald, 1960, p.37; McClure, 1973). The inertia tensor

is written

C = C.) + c (3-9)



where

A 0 0 c c C

C-- 0 A 0, c c.c 1 (3-10)

O 0 C c: c C:

Thus, C, corresponds to the model of an undeformed earth

whose principal axes of inertia coincide with the coordinate

3'xes, which has rotational symmetry (B=A) and whose princi-

pal moments of in-ertia A and C are constant in time. The

tensor c takes into account the deviation of the actual

earth from this simplified model.

The rotation vector is written as

- + (3-11)

where

0

S= (3-12)

corresponds (to a rotation with constant angular velocity

around the z-axis and

mn

m (3-1 3'

In

ii,_______i______-



expresses deviations of the rotation axis from the z-axli;

i a no dm and variat-ons of the rotational speed

3 o th c a nd a re c onji d ere d SmalIl quanti ties e no';e

squares, products and higher power's can be neglected.

Ae substitute (3-9) and (31-11) into i(3-ij) and

re ta in i n ear terms only. The resul 1t i s

L. A-.ii + (C -A im + c

L = l - (C-A)fm. * + ~c 3 - I'

L C .- rh: + t

the dot denoti ng a ti me deri vati ve ,.

It wil11 be very conveni ent to combine tne first two

equations by using complex notation, Putting

Mm + i m

C C + 1 c C 
-1

L L 4 - i L

where -1 (note the difference between the complex nu-i-

ber L ana the three-vector L, and between the comp'ex

number c and the tensor c !). The result is

L = _ - i 1,C -A)m + + I c ;(-

i r fact, by substi tuti ng ( 3- ')., p e rForm in a t he c om-p Ie x

multiPl'cations and separatina real and imaginary parts, we

qet back tne fi rst two equationsi of(31.



Eq. ca- b~Ci e writt*en n to e farm

CA

is I qa n tneE ~ul f c re que n cy (2-14 'we may identify toe

u-onstant . n s ec. 2 ,i it h the present a and

- iL c - 1

(C-A>- C-A (C-A)7. -

Tne riuanti ty is called thie exci tation funct icn because
It causes a deviation of podr notion from the simple case

afr-P rotation of a rigiid earth considered in sec. 2, cr

1 f the uncticn i s k nowjn , tnen 3-7 can te sc-
vea fo0r [11, 0Dtali n in g toe caom p one n ts M a nd M coaracter--
iz,'nn a deviation of the earths, rotation ax- a from tne z-ax~s,

oa ci I, po a r) m t i o n. S i ain 1 a r I Y , t he to r d ea at- o n f 2-
anc ca n b e wr t t en a s

L 32

can j O~/ ,' fi - qk t~ yinr at"an ail tae speed of ro-

t 3 r i v r r i r i "he0 I -ncato a of day.



In other terms, po Iar mot1ron i trio /a tl ti rn t -

direction of the rotation vector , and i char C er z- _

variations in tre le nqt-n of .. It V Ver/ r r IarII a a3u -P .,

both phenomena are separated in the nine ar appro bmit!.11,1

the sequel we shall restrict ourse ves to a a mjt arr ,.Tri ,.

is more interesting and less simule.

We shall also linearize the expression (3-3), ,.ny .cr

for h=O reduces to

H = C . " -' I

The substitution of (3-9) and- (3-11) yields, on neclectir..

terms of second and higher order,

H = A.m + 7c , -2

where

H = H. + iH (3-23

and

H = C C m + i.cB 3. -2.

The division of the equatorial comoonents H. and H- of

the vector H by its length, which approximately is >,

gives the equatorial components hi and h of the unit

7 i
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vector l H

, H,h n = n ih-

These quantities define the deviation of the annular momen-

tum axis (the di rection of H) from tie z-axi s, i te sar e

way as Il ariI m define tne dev'ation of toe ro ation

axis from the z-a i s

FinalIy, we consider the fiqure axis whic n is tne axis

of maximum inertia for the deformied earth, that is, a prin-

cipal axis of che tensor C (the z-axis as a Principal

axis of the tensor C-,). The determination of the principal

axes of a symmetric matrix is straightforward; for the tensor

(3-9) we get

C. C
f, , f , 3-26

C -A C -A

or in complex notation

f = f + if c 3-27

(McClure, 1973, Appendix E). The quantities f. and f-

are equatorial components of the unit vector of the figure

a xi s

Since the relative angular momentum vector (3-4) is zero,

the letter h is free for our present new use.

.. , .... , ~ ~-AL. ...=-- -
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4. FREE POLAR MOTION FOR AN ELASTIC EARTH

If the earth rotates about an axis which deviates

from the axis of symmetry, there occur centrifugal forces

which tend to distort it, and an elastic earth yields to

this distortion (this is similar to distorting forces

acting on an unbalanced wheel). It is well known that this

distortion introduces products of inertia c-- and c.

which are proportional to the deviation of the rotation

axis, m, and m- (Jeffreys, 1970, sec. 7.04; Munk and

Macdonald, 1960, p. 38). In complex notation, using (3-15),

we have

k
c = - (C-A)m , (4-1)

S

where k is a Love number well known from elasticity theory,

and k is an abbreviation
S

k 3G(C-A) (4-2)S 5.-,22

and bears the somewhat unfortunate name of secular Love

number (Munk and Macdonald, 1960, p. 26). Here G denotes

the gravitational constant and a is the earth's equatorial

radius or, to the same accuracy, its mean radius: a R =

= 6371 km. More about the constants k and L will be said
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at the end of this section.

This quantity (4-1) is to be used in the excitation

function (3-19). In the case of free rotation to be con-

sidered in this section, there is no effect of sun and moon,

that is, no external torque L. Thus (3-19) reduces to

c i# k ib (4-2
=- - y~~T m 4 -

S

the subscript "RD" denoting "rotational deformation", and

(3-17) becomes

r = ir cm (elastic earth) . (4-4

Here

k i~ - 45

C E k (4-E

S

is the Chandler frequency, the name will be explained below;

note that , is the Euler frequency (2-14).

The complex equation (4-4) splits up into two real

ones

d, + m 0

(4-6)
I - m = 0 ,• C

I __ l '
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which have the same form as (2-15) w nicr, in ous, n'' .

notation, could be written as

ni ic C (Mriid e 3r ,n) 7-

With the numerical values

k 0.30, k s  = 0.96 (diriersionle-is -

we get from (4-5)

- 0.7-_ , -9

which means that the period (2-18) is lengthened by toe

factor 1/0.7 " 1.4 . The multiplication by this factor b r-inc

the Euler period of 305 days (which wdould hold for a 2g id

earth and corresponds to the Euler frequency close to toe

actual Chandler period of about 430 days, which corresoonis

ti the Chandler frequency C

The solution of (4-4) may be written in comple,, form

as

m = m-,e ( 1

with an arbitrary (complex) constant m,. This is immediate-

ly verified by substitution into (4-4), which again shows

the advantage of complex notation. Of course, (4-10 ,  is

equivalent to 12-16) with replaced by
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o , re p ornepnds t te ,roationaI de ormation C,

a ; ear t , oe i n n Lmer ca1 / cae u a to toe ( L o v e

number i i., p. 26 .
T ne d ffer-e ne betwoen" and k accordiog to -- 3

ma, ne e plained ny a number f hyDot heses . ut it s not

Iowr Wr I h o of ttiece i t any , 1 correct ibid. , p. . e

Ssual ipl)roac:n is to use th elastic Love number k for

ai i e -,tic deformation;, whether toe! are caused by centr -

fuqa or tidal disturbances and whether toey represent con-

;tan t or temporally variable deformations (cf. MeIchior, 17S'

Pecentl, however, some authors, fol iowina McC I re A1973 ,

are usnq the usual Love number k for temporally variao e



e a s t de , 0in m o10n;

yii t-e o i n f- the reSPt a u n 3n r ;. j

s inaop rop rpr e. Te t heory ot defL riia In, o n e la tic

e i tn m a k e.- nu d t- -e n ce b t w fl d e fj I,,Ii>h (,,i e 1 3 P

const3nt in time and for thun j, wnicn i,-j em ra W 1  L, 'i. ,-

f hr tc , the Love number k i rele. .rt . E vn v r ear n

models witn a liquid c,ore, fur which I I ' im gt I e er. I nce

of k on frequency, give for constant ,Ifurm'atonlc a k

that is close to 0.3; cf. (Wahr, 1979 . t would reqjuire

an earth model of a completely different ,'-e, , t i T. F O,

constant deformations a k close to 1, if this 1, at 311;

possible and physically meaningful. No such model has ueen

given so far.

Since geodynamical computations should oe based on a

wel'-defined meaningful model, it is strongly advocated to

use a k following from such a model , ,Iolodensky, 1961;

Wanr, 1979). No physically observable error 4s introduced in

this way: even if the secular Love number were "true" for

constant deformations, this would only imply a reference

model of a slightly different flattening but not change at

all the observable physical situation.

Therefore we shall use k to characterize the elastic

response cf the earth also for the constant part of the de-

formation, restricting ks  purely to its use as the abbre-

viation (4-2) without attempting a physical interpretation

of k in the sense of an elastic or nonelastic response.S



6

We finally note tnat, in a rigid Dody, tnere are no

e'astic deformations and the shape of tne body and ,ts gra-

vitational potential V do not change. Hence V=O, so

that (4-"'" implies

k : 0 for a rigid body. (4-12

Therefore, formulas for a rigid earth can be obtained from

those for an elastic earth by simply putting k=O.

-,T __--- - , .
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The cas i equt i ons arc

iL C ,

ne e citation function may be s) a

of which the terms represent:

- D ** rotational ,]eform vt ,,':., ,, , , ,,, ",:

distort~ons,
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V.3 ttracti on of the m,,oon D y tnre e arto
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the earth, which for, rotational s mer, tjl tini e,, t-

known form

V= 1C a 0 co. .
r

'f. Heiskanen arid r , '

yes tO second-order s p ler'i i ] r'ij j M

s 3~ ~v a tcn a r) 1) r)tan

Ad

--/ L'~ ~



30

- (5.. a ~sr>

M p c o

nie>e , Is defined oy Fig. 1.2; note that we have sin

,d -,*: r Instead of coS and s1r t since the torque

r m tn e ne r i an p an e.

T is e, uat on ives tne equatorial cumponents of ne

- ,/ n ,,loon on tne earn; tne influence of

,e ti, - no.2a analoqous formula.

n , I tn "-5, now Snows

- -, .-.

'F2-

, . - . ,' -tA
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3 G . J a-

L 3, G .. ! a ._ A s , -i-: C

whe re the s ub s cr pt dist ngu i n

finally the simpler comple . o,-fi

L - 3G_ j a-' Ae '-

as usual, L = L + i L

Now (5-2) gives , u s n Q

iL TB - ,..
- -- A77i L "

where the dimensionless coefficiens are e' ec

Tidal deformation. The products of iert-I

and C , are wel known to e related *_o e e

'n=2, m=I o' the spherici l-harmonic expansion

a ornal potentia ,  V, cf. (Heiskanen and Yori 'z

I the Dresen* case, where c and c. represer',

tjrbances o9 t e inertia tensor dJC to the tidal e

~e relevant potential is

v -- ,--_____________- .------- --



trae dnfoQ'.3t ,f t r e,,'tn by .'.c da, petenl 2 ,

-f. 4-> we triu~ need uriy -ne ttsera par:

-0 , and ,.irti >-12 we let wt, a ratner 5ra'Cnt ' -
, ar'l VwaL, ' C lire, 1973, p. 22,:

'9 7 3fl 2'.

,.n2C'r ,in e implified by com iDex, no atio .

-: - - B - -

eere we hie used 4-).

f eforma to cases a chance o, prcducts IF
,t a,' - '  reduces to

n C' r j; 2 n cn Je red n 5-13). The Gcer ent an

I w -ch no ethner wit - 7 i s

o ac 7-- -. Ie r'SO t can be wri tten as

WMAWW"Ma



where

L = - _ '5-20

and k is defined by ia-2, " B ic *>ven Dy ,-12,.

The physical meaning of ind snould be

carefully kept in mind. The function represents tie

torque exerted by sun and moon. It is the same ft r a rigid

and a nonrigid earth. The function .,, -is caised by elastic

deformation; it therefore depends on the Love riumber k an

is zero for a rigid body, in accordance ,,. 5k. -12!. This

- L represents the "direct tidal eff e ic

direct tidal effect", and the sun,

"+ i -) ' -
T 'TD +

expresses the total effect of sun and moon.

Solution of the basic equation. in view of - n,i

(5-21), the basic equation (5-1) may be written

E (M R D E , T''-L

Using (4-3) and (4-5), this can be brought into the form

it - m = -i E
C 1+k 'r

(5-23
+ -, k - _

- {I + sL B e *:

.... 4
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Tne solution of this equation is civen by

+ I C .- I+-- e )+ k

Sm~e c +- i e -' - t : . '5-24

as can be verified by substitution. It contains two constants.

which are the real and the imaginary part of the complex con-

stant m , and is thus the general solution of (5-23).

The solution (5-24) consists of the solution of tne

homogeneous equation (4-4), corresponding to free motion

without external forces, and a term representing the effect

of lunisolar perturbations.

-A. -v
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6. POLAR MOTION : OTHER AXES

Eq. (5-24) describes the movement of the instanta-

neous rotation axis, which is characterized by the complex

number m = mi+ im5  where mi  and in are the equatorial

components of the unit vector of the rotation axis. Similarly,

the angular momentum axis is characterized by the complex

number h given by (3-25), and the figure axis is described

by the complex number f given by (3-27).

Eq. (3-27) gives the figure axis:

f = c 6 -,

where c = cj + ic2 3  is a complex combination of proaucts

of inertia. By (3-22), (3-23), and (3-25) we have

A 1
h = m + C c 6-2

The combination of (6-1) and (6-2) finally gives

h =A C-A 6-3
h m + ----

for the angular momentum axis.

For 1:he resulting formulas we shall recall the notations

for a few constants and shall introduce a new one the

secular Love number (4-2)

k '3G(C-A) (6-A)
a.

.3~0 a.4"0..
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the Eulerian frequency (3-18)

C -A 6-5

the Chandlerian frequency (4-5)

I,

S-- 6-6i C E

i1 +

the nutational frequency (5-20)

- .(6-7

(the name will become clear in sec. 7), and the factor

i + k w .

K ,

+ + - I 1 + 16-8)
] C k k s

Using these notations, we can represent the polar motion

p of various axes. From (5-24) we get

p m = P) e " A B e (6-9)
P.

for the polar" motion of the rotation axis R The figure

axis F is obtained from (6-), where c is the sum of



3)7

(4-1) for rotational deformation and (5-17) for tida defor-

mati on

PF f _k) ;Cct - . - E- _"_
k k (1

(6- 1o)

Finally, these two equations are linearly combined by (6-3) to

getthe polar motion of the angular momentum axis:

k
hoe iaCt C-A k 1 - . e -

pB e
ks

6-11)

wi th

h A C-A k (h C k (n6-12

These formulas are illustrated by Fig. 6.1, which shows

the plane tangent to the terrestrial sphere at the point 0

representing the z-axis and, at the same time, a mean position

of all three axes. The other points designate the rotation axis

R , the angular momentum axis H , the figure axis F , and

tneir force-free counterparts R}, H 0 and F9 , as given by

the fist term on the right-hand side of (6-9), (6-11), and
$6-10. In order to get a feeling for the orders of magnitude,

we note tnat
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FIGURE 6.1. Poflar motion for an elastic eart'

AL.
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S

C-A C-A 0.003

k 0.3

S

Let us first consider the free motion only. The points

R- and H, describe concentric circles whose radius is on

the order of 0.2" which corresponds to 6m . Both points

are very close to each other since ho - m) by (6-12) and

(6-13); there is HOR, " 2cm. The point 0 corresponds to

the figure axis in the undisturbed case. Since the axis of

rotation does not coincide with the figure axis, the rotation

of the earth produces a nonsymmetric deformation 'sec. 4') which

causes the axis of maximum inertia to shift to F . The first

term on the right-hand side of (6-10) shows that OF 2m

since k/ks 0.3. The prints R), H), and F lie on the

same radius and slowly rotate together around 0; the perioca

is the Chandler period of about 430 days.

So much for the free motion. The attraction of sun and

moon causes forced motions which are represented oy the second

term on the right-hand sides of (6-9), (6-10), and (6-11). The

instantaneous pole of rotation, R , describes a near-circular

closed curve around Re; we have RR - 60 cm. A similar

curve is described by the angular momentum pole H around
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since 1 - kik 0.7, we have HH - 40 cm. EspeciallyS

remarkaDle is the motion of the pole F of the figure axis:

it describes a quasi-circular motion around F, whose radius

is by (k/k )A/(C-A) 1- 00 times larger than OR,, namely

about 60 in From (6-3) it is clear that R, H, and F lie

on a straight line.

Since the period of these forced motions is

on the order of I day; we therefore speak of diurnal polar

mo t i ons.

We also point out the evident fact that the motion of

the various axis for the case of a rigid earth can be obtained

by putting the Love number k = 0 in these formulas. The main

change in Fig. 6.1 is that, for a rigid earth, the points F

and F- will coincide with the origin 0 and the radii R-R

and H-H will be almost equal.

A final remark is in order. The actual free polar motion

is much more complicated than the simple circular model consider-

ed here, for a variety of reasons, not all of which are well

understood. The free motion cannot, therefore,be adequately pre-

dicted by an analytical model and can only be determined by

observation (international Latitude Service, International Polar

Motion Service, Doppler, Laser,VLBi). On the other hand it

appears that the lunisolar (forced) motion of the pole can oe

predicted well.

' .P



7. PRECESSION AND NL'7AO N ,''',* .

Tne starting point is !ur D

dH
L-

dt

This equation, which states that the time de, iat ve of the

angular momentum H equals the torC(:ue L , . val io for a

nonrotating (inertial) system .( ".. Tnl i -' tem is speci-

fied as follows (Fig. 7.1). The X - plane i tne ecI i pti c

Greenwich

FIGURE 7.1. The angular momentum axis in space ii u-

strated by means of a unit sphere.

' ~ ~ ~ ~ ~ X o - .. .
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G

.ni e-ua ion is di fferentiated vith respect t, t ime e rea

H as a constant since, to a hign accurac ,
L

H C const. ,

cf. tne third equation of 2-11). The first two componen-s

of (7-1) are then

C.(-cos" sin, - sin"cosH H H L

7- '

C.(cos.. cos, - sin Hsin. > ) L ,

where L and L are the X and X components of the
X e .v

torque L The soluti on with respect to a and ; gi ves



ct

the an qua c-rnentm i .

W'~oo 1 3rd 13

Awi

• ogo



en



as befcDre -- 7. 'ing K , *i t ,

sn-l -1 -- 3 e

3efore i n t e gr at 1 n tn 1 e< uat n . '~ st i t r 

the cases : 0 and )0 , " - A e also 

s'nce is a frequency hat appear ' ' i. ., e - en ,

tne :idal otentia '1 -8 Let e s Cur'-"
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nen 13) can oe spli t jp n,/ dis i nq> ,',.- ca.±s -
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and recess' on anc natat on refer to a., r,&rt

oth systems are r tatinq re a1t 

e oc ty

Since tne angular motiors 0 and ma n r

sal e' than nre rotation o- th, ea, " t', ,, ' e

We also now Me c ai or, 7. :2 :. . , ' oa s:o:: " J"-

s s y mme t r - C rt re s :ect to L et E, oS s 2 cc I v e a e -

ative subscrip in such a way trot and -e a ,': dnt

a synmetric freq(,enc, pa r"

Then, two symmetric frequencies And iuve toe .ame

nutational frequency ( !only tne siin of the ccef,"-c ents

wi 1I be di fferent).

It is c 1ear that the sidereal freq ,ency produces

precession. The pr- nc i al nutation omnonent come; r,) n a n

that corresponds o the motion oC the lunar node. it 13S A

Oeriod of 1 ".66 'eas and am: litdes in longitude C 1,1.

o 17.2" and i ob i uit (*.e. , In " ) of 9.2'" Tle t1da

e f ect of this .. .n is nsicn ficant, ut in view of the sea'r -

ness of :. th c ,'-res pondinq nutati ncl coefficient, proport-

ional to 3 /7 1 -1,;. is q r-at]l/ nagnified. Other pe' o'ds

a r a a year sun ad a rnor n (noon) and tn, e i multip]es

Genera1 1y, we e e thtn e -oeffcients in preces -on e or
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nutation figuring in (7-14) are simply relateo to tre coeffi-

cients of tne tidal potential, namely through (5-14). The

fact that precession (as well as nutation) is proportional

to the constant

H =- (7-171
C

makes it possible to determine this constant. It is called

dynamical ellipticity and is of basic importance for physical

geodesy (cf. Heiskanen and Moritz, 1967, p.339).

The relation between precession, nutation and tidal

potential has been studied in particular detail by Melchior

1971, 1978).

Finally we point out that precession and nutation of

tie angular momentum axis depend only on the lunisolar torque

and not on the Love number k . Therefore, the formulas '7-14

are the same for a rigid and an elastic earth; cf. also

(Fedorov, 1963, p. 16).

kI
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8. PRECESSION AND NUTATION OTHER AXES

Of the three axes considered in sec.6 the instanta-

neous rotation axis, the angular momentum axis, and the figu,'e

axis,we have treated the spatial motion of the angular momen-

tum axis in the preceding section. The spatial motion of the

remaning two axes will be studied now. As we have seen in

sec.6 , however, the instantaneous figure axis performs, in

the case of an elastic earth, such a large daily motion with

respect to the earth's body (about 60 m) that it is of little

practical use. Much more useful is the z-axis which corresponds

to the figure axis of an undeformed earth and, for a rigid eart,

coincides with the figure axis. So we shall study the motion

of the z-axis and of the instantaneous rotation axis, as well

as the so-called celestial pole.

It will turn out that the precession of different axes

is the same, and the nutation nearly so. The very small diffe'--

ences between the nutation of the angular momentum axis and

that of other axes are sometimes called Oppolzer terms Woriard

1953; Kinoshita, 1977).

Motion of the z-axis. We again employ our usual two

coordinate systems : a "space-fixed" inertial coordinate system

X-X-X B  as specified in the beginning of sec.7 (cf. Fig. 7.I

and an "earth-fixed" system xlx-x ,  introduced in sec.3. in

the latter system, the axis x, = z corresponds to the fiure

axis of the undeformed earth, ir1 it is a Liouville axis, the
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equation of mot ion taking tile simple form (3-8). The z-axis

is, therefore, also called a mean Tisserand figure axis. The

X plane is the ecliptic, and the X axis represents the

vernal equinox (both at a fixed epoch). The XiX 2  plane re-

presents the equator (more precisely, the mean equator of fi-

gure), and the xI axis corresponds to the Greenwich meridian

(more precisely, to a conventionally assumed fixed direction

close to the Greenwich meridian).

Since we are concerned only with directions and rotations,

the origins are of no interest here; we can for the present pur-

pose consider both systems geocentric.

The relative orientation of the x.x x. system relative
to the XX,X. system can be given by the three Euler angles

xl

FIGURE ,.1A . The basic Euler anqles.



,~defined as in Fig. 8.1. Trip quanit ie , ~

sim Ila r, but not identical, to the anqie I: POfFt r7~

7.1 :now the pole is the z-axis, arid riot the angular mo,'ren-

turn axis. We get the system xx~ by rotating trie ;&t

X1 XX 3 first about the 3-axis by the angle *until It

coi nciaes with the node N (which is, )f (course, not o~ac-'iy

the same point as N in Fig. 7.1), then about the no. a~

by the angle ,and finally aoOUt the 3-as bi y the angoe

The angle is the longitude of tne node, repre-

sents the obliquity of the ecliptic, and is an angie

that measures the rotation of the earth. These Euler anlces

are frequently used in physics and astronomy; note, noweier,

that almost every author uses a different definitioni o -neem.

We follow (Plummer, 1918) and (McClure, 1973).

The components of the rotation vec tor 1wn ic n *

not in general coincide with the x. = zaxis:) are aentec

b y ),~ ~ Compared to (3-11), 1,3-12' and (3-13' we niave

-IM 2I +m ) .8i

They are connected to the time derivatives of the Euler 3inn'es

by Euler's well-known kinematical equations:

= -ecos' - ysin,-,sin

9s asn~ - ')sinecos , 3-

= 'cos ' +
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cf. (Synge, 1960, p.283), but note the different definition

of Euler angles.

The complex combination of the first two equations

gives

- + - -e (, + i. sin,) -3

w n en c e

+ I s i/ = Ie i.. + i -)

- -e' >  m + im

by (3-I) ,or briefly, using (3-15

+ i .in - -me (8-4)

This equation is of basic importance: it relates precession

and nutation, as expressed by the Euler angles and , to

the polar motion of the rotation axis, m

The angle I measures the earth's rotation. Since the

changes of - and .; are very small, it is a sufficient ap-

proximation to put, similarly to (7-10),

- . ... 3-5

Then we can substi tute m from (6-9) into (8-4) to

obtain



- + i sin- = -. m e .

C-A AI

This equation is very similar to (7-13) ano is intearate. ir.

the same way, with the result

+ i sin- = i , e - CA

C-A , . 3 e-..

where, in analogy to (7-14), and are the diff-,en(e

between the instantaneous values of .. nd and srme re-

ference values.

This equation is very similar to (7-11). In fact, the

precession term is the same, and the nutation terms onl/ dif-

fer by the factor < which is very close to unity by i6-S,

and (6-13). An important difference is the presence of tne -

term on the right-hand side of (8-7), which oriqinates from

free polar motion.

This free motion term has a nearly diurnal frequency,

since ', 7 - - is very close to the sidereal frequency. The

forced motion (lunisolar) term, on the other hand, is long-

periodic, the principal periods being 18.66 years, a ycar,

-- 4---

fi



a nd a m',ontin i s we n3ave men t ionec, i n t-c 7i

This is. in marked contrast to polar motion woere the

forced part is nearly diurnal and toie free motion beinS 11ong-

p e r Io dc wi tn the Chandler- period of 4 30 days .

To repeat, .- a nd ',i n ( - 7 ) represent precession,

anc nutation of thfc mean Tisserand finure axis.

Motion of the rotation axis. Let .and b e the

L;Ier angles of tne rotation axis, oe"'Ined in analogy to toe

definition of .~and for the angular momentum axis In

7 qis definition is shown by Fig. 8.2, where R denotes

toe ru a t 41o rlIXijS and "equator of P "corresponds to a plane

normal, to toe rotation axi -. We also introduce tne differences

F I G UJR E 2 . T h r otat n *i3p a C e I I I u t r a t ed
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R

-t sin

m2

Greenwich

FIGURE 8.3. Direction difference between rotation axis

R and x3  axis z , illustrated on the

unit sphere (above) and on the tangent pla-

ne at z (below).



"p ( R . ,". . . .8-8)

between the Euler angles for the rotation axis and those for

the z-axis as considered in (8-7).
Fiq. 8.3 shows that and (- ,sin.) are related

to the polar, motion components in, and m- by a plane ro-

tation, which is best written in complex form:

+ sin = -i ei  = -ime

where m m, + im, as usual. Again we substitute '6-9 and

obtain

+ sin = -im eI. C" CB +

+ A j e 8 1

This is added to (3-7) and gives

+ ', 1 in, - i m~e C +

C

C -A C-AC B t + C B, +

C-A~ _1+ A (1' I + -- )<.B e

(3-li



57

The equation is very simil jr to -I and - . '

the precession term is the a[ie, and the rnutatior c e i'eC- TI

nearly so. Again, there is a term due to free polar mo0on 1,e a

first on the right-hand side) which, huwever, is much sma er

tnan the free motion term in (3-71.

The celestial pole. Free polar motion cannot be ad-

equately modeled in a simple mathematical way; the :ircle

m. e 
c

around 0 with radius OR- (Fig. 6.1) is valid only for an

ideally elastic earth. In reality, the polar motion curve is

rather irreqular and can only be determined empirically; c-.

(Mueller, 1969, p.33).

On the other hand, lunisolar effects can be predicted

well, both in polar motion and in nutation. It is, therefore,

appropriate to refer calculation of precession and nutation to

an axis which is not affected by free polar motion. This ex-

cludes the rotation axis (8-11) and the z-axis (8-7), but lea-

ves the angular momentum axis which does not contain a free

motion term in nutation by (7-14).

An inspection of Fiq. 6.1. shows, however, that the in-

stantaneous angular momentum axis H shows a forced nearly

diurnal polar motion of radius 40 cm around H, . If we wisn

to have an axis which not only is a suitable reference for pre-

cession and nutation, but also is relativel stable with respet
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2e ' as ,Y e ha ve p o i n ted t u v f o t ' . i T

uS Ot imal 1 y S moo t h

Furthermcre, C H shares w; th tne ho n qou .r 1C Me -

turn ax's H toie Droperty that its nutation f n ,i 3, ,a

oredictable since it does not contain i tier te, m q ,

.3uld be accessible only afterward's tv at)se,"vat i ri

'or these and other reasons Le',. !,7,c; L < c t

Mue 1i e 7, 179 it aopears that C is to est c ,i an,

an aporopriate definition of a celestia r t ren , .

i s Gene-a Assembly in M ortre.3l in I' the .n t 1<i
Astronomical Union has, in fact, adopted as te i

celestial Dole of reference.

W'e finally note that, for m e X , oe ex Sre - 1

, 7 and '3-1] ) coincide. Eq . ( 6o-t 1-r h o,' ia

tody I k=O , also f = 0 in this case, so t ,i te

ax s remains at t he ,oriqin of polar mctn us 1)r at un

of a ri qid earth and in the absence of rol a 7 mat In , '

Genera ), tne celestiaI oo e 1io , i>. n 7 i, d0, o

o n te fi nure ai s Therefore the di , n o:< 'le

ole nas also been ca] 'ed "figure ax ,1 ,Anf. rt r

ter mf no 1 ogv 'Ark.nson. ,; , has cau co A > Jra , '

as described by Mue'lfer 19 .

I' the earth is elastic ,ven w] 5" t 1 :,ui .

Doc 1 a motion is absent, tnrn we (an nr v a that C colA'

tn the o r n In 0 i n .a 6 1, 0i n c n to )C i C
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nutation has some affin ts tia theo f r-, tit n:rod,

in tne distinction between ar!,ijIar lnm mlln., r i l! -I i fi'j

a x is , a n d r o t a t i o n aXis ; this rx 1 a t. n o 1 1 te d ( A

Dy McClure (1973, sec.2 . it is restriC'AJ tr-d ri ' driu C

and presents a less systematic and coPi te tratm n an c

aspects, but numerical details sucn as the neglect of ter',ms

are more carefully considered (although several authors hldv

pointed out minor errors in Woolard's treatment',. Woolara'

theory has bnen a breakthrough and a classic. It ris servel

for decades as the official reference (or precession and

nutation of the International Astronomical Union. Now,

however, it has been superseded by Kinosnita s theory For

a ,igid earth and by other theories for elastic and liquid

core models.



.NOSHITA'S HEDRY OF PRECESSION AND ,'JTATION.

The moct eleoant formulation of analytical mechanics

s Hamil 1 ton 's neo r y. It can be -u mari zed as fol o w s , cf.
, noldyn e, 1960), Let i conservative mecnani-

cal system be descried by n independent variables q.

which are cilled "generalized coordinates", let its Kineti,

energy he T and its potential energy U Define the "ge-

neralized impulses" p by

T

P

, C" n ' dt , and define the Hamiltonian function

0J

= T 9-2

e, ia I to the tota 1 enerqy. Then the equations of moct on for
, vn.3mical system under consideration are Hamilton's canon-

:3 eqjations

,(I -

9-3)
I p., 

:
,i t ,

- .qrlll 
" '-

- i I-



The quantities p_ and q dre ca led canonical I v ," tl.,1

Because of its formal simpli city, Hami i ton ne

possesses considerable theoretical advanta e . a nu rvija

variables are, therefore, frequently used in celest>l i e-

chanics; cf. (Brouwer and Clemence, 1961, chapter !711

They have been introduced into the theory of prece-sian and

nutation by H. Andoyer in 1911; cf. (Andoyer, 1923, 19126 .

Recently, Kinoshita (1977) has used Andoyer varia les; to de-

ive the most accurate theory of precession and nutatior

available for a rigid earth. in this section we shall pres-er,*:

the theoretical foundation of Kinoshita's theoy woich is

very simple whereas the details are enormously comilica-ed.

Andover's variables are denoted b-/

1 , p L

q h , p = H

so that coordinates and correspondinn impulses are denoted sy

the same letter. Their definition is as explained by means

of Fia. 9. 1.

We use the two systems XX ,X (inertial) and x-x x:

(earth-fixed) as before (cf. sec.8). The ecliptic (fixed at

an epoch t1 ) corresponds to the ,[X, plane, and the (instan-

taneous) equator to the x:x plane. The point x, denotes

the figure axis which, in fact, for a rigid body coincides with

the z x, axis. The point M denotes the angular momentum

vector M Note the change in notation for this vector which

- 4 :.
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FIIlE .1 Te odye vribls , , X3Th

vctor.M

el ;cwhore in Lhi reoort is denoted by H . This cnange 4,s

n c-, -' ;ry s ince w e wish to reta in Kiriosh i ta 's nota ti on ( 9--'

wnr I is a -,anonical variable. The equation of NI cor-

i) t j ,o a plane- which is normnal1 to the an gu a r momen turn

Fiq. 9.1 can be considered a superposition of Figs. 7.1.

lr'i .I wit fh tre important difference that now we look, so

i a t th , ac k o f tne un it s phe re the nodes N an d
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Q shown in Fig. 9.1 differ from the corresponding nodes in

the previous figures by 180

Apart from this difference, the Andoyer variable h

corresponds to 'H in Fia. 7.1 and the new variable 1 is

seen essentially to be the argument of polar motion (-

in eq. (2-16)). The sum g + 1 is nearly equal to the Euler

angle - + 180 The angles I and I in Fig. 9.1 are

equivalent to e H and P in the previous figures.

Kinoshita also introduces the spherical distances

XN = h, , Nx1  = p , (9-5)

corresponding, in Fig. 8.1. , to , and : , respectively.

Hence hf, If, are the Euler angles (apart from 180 ) in

Kinoshita's notation.

Having thus introduced the canonical coordinates 1, q,

h, we can easily find the corresponding canonical impulses

L, G, H by (9-1). First we have to find the kinetic energy

T . From classical mechanics (Arnold, 1978, p. 137) we know

the relation

T 1 TC A (9-6

where r is the inertia tensor (2-10), J is the rotation

vector, and 7 its transpose. The vector can now be written

as follows:

he ge, , 1e (9-7

-I



T h s nean, that the total rotation is split up ,nto a rotatior

about the X, axis with speed n dh/"dt , into a rotation

about the annjlar momentum axis witn speed g ,and a rotatior

about the X. axis with speed 1 The vectors e. , e

and e, are the unit vectors of the directions around wnicn

the rotations are performed: e, is the unit vector of tre

x, axis (the angle h is counted in the plane normal to this

axis), e is the unit vector of the angular momentum vector

M ,the angle g is counted in the plane normal to M ), and

e is the unit vector of the x, axis (for a similar reason,.

The differentiation of (9-6) with respect to I yields:

T 1 - + - C . M'e

= 1 e , 9-8

because of the symmetry of C , using (2-5) with M instead

of H and (9-7), and denotinq the inner product by a dot as

usual. Other der;v.itives are obtained in the same way. The

c3noni cal impulses are now given by (9-1) with (9-4)

IT
7 M e ,

T. . M e , (9-9

M! - I .. . M .

* n

4<-
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Thus, L is the x component of N 1 i this h : %- :

de M of the annular momentum vector j t s f ,oir,, e n

unit vector a, and M have the same direction, ano

is the X: component of ,I

Briefly we may say that a canonical imiulse 'L, ,

or H) is the component of M normal to the plane alone wni'wr

the correspondinq canonical coordinate (1, q, or n) is countee.

Usinq the angles I and J in Fig. 9.1 , qe ma/

write

G M' L = GcosJ , H = Gcosl 9-10

If we know the canonical variables (1, g, h, L, G, H),

then the Euler angles can easily be computed: by (9-10' we

have

cosl = H cosJ 9-11)

the solution of the spherical triangle NPQ then gives

QN and NP , and finally

h- XIN = h + QN

= Nx, = NP + 1

We now need an expression of the kinetic energy T in

terms of canonical variables. In the body-fixed system xix:x-,

formed bj the principal axis of inertia, the expression (9-6)

becomes, usino (2-10, and (2-11),



:1

ei e o noutj Ur JD pu ,? rtti onil symmetry so tnat tre pri rci-

3 t o m .;,, ert:; of nert ia, A and £ , may e tP

N,, M z L -9 Further, the Qrojecti, of

,Oflt th P , / D]] ,

M + L = L

,r, tmG ,ion the x axis the annIe 270 - 1 , so

that

",, -" L sin I
9- I:

M ( I. - L oc OS

-, nc e, -1 3 become

S s n. ] Cos. ]L-
- - -- . , - L + 9-16

A B" 2C

wnlh expresses the kinetic energy in terms of the canonical

,l~ i a h r .



Now we may write the Hami tonian eoluatlon; 9-:

our problem:

dl - ".5. dL ,..

-I 'G

"- < dGe-17

h . dH.

-t H d-t -

By (9-2) we have

.' = II + U

where T is given by k9-16) and tne potential energy !J comes

from the attraction of sun and moon.

Equations (9-17) may be solved by standard perturbation

methods of celestial mechanics (Brouwer and Clemence, 1961,

chapter XVII), usinq, as a first approximation, free noteun wit'i

U = 0 . This free motion is discussed in detail, e.g. In

(Arkhanaelsky, 1977). Andoyer (1926) used simple variation of

constants, whereas Kinoshita employs a considerably more sopni-

sticated technique (method of Hori, cf. (Schneider, 1979, p.O09 .

We cannot go into the details of this solution of the

forced motion, which are enormously envolved, and refer the

reader to (Kinoshita, 1977). The results are series for precess "c

and nutation of the angular momentum axis, the figure axis

.'for a riaid body coinciding with the z x axis), and the
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rotation axis which have the form of tne seres derived :n

secs. / anc a In fact, h = ": and d = are

nutation in lonqi tude and obliquity for tne angular mcmen: ?

axis, and similarity for the otner axes.

Kinoshi ta's results are accurate to 0.0001" , corre-
spondino to 3mm in position. They represent the most

complete and precise theory of precession and nutation availan'e

for a rigid earth, especially pecause he developes a very

accurate expression for the lunisolar potential, and are thus

a progress with respect to 'Aoolaroi, 1953). Kinosnita's theory

is also somewhat more accurate than the method described in

secs. 7 arid 8, but this latter method is valid also for an

elastic earth whereas Kinoshita's method is restricted to a

iqid body.

The best wall to compute nutations for an elastic ear:h

seems to apply the formulas of sec. S to compute differences

by applying these formulas first for the actual Love number

k and then for k = 0 (which gives rigid body results).

Since these differences are very small, they can be computed

quite precisely by the theory of sec. 8 These differences

are then added to Kinoshita's rigid-body results to give

-- -- -I -1 -. .. ._ _ _ _ _ _ _ _ I



eIastic aends
A similar procedure is advocated by Wahr 1379, 1 , 0

to take into account effects of the liquid core. In fa,t,

such effects are considerably larger and more iMportant :n~n

effects of elasticity. Therefore, the remaining part o,- tne

report will be devoted to the influence of the liquid cure.



: 'C:<Fij D, '2 BODY R0TAT O

aq- ratior1 0 toe free rotation of a rigid bodY

I . .''i~o al,,, problem is of basic theoretical importance

, e-ve , a oreparat orn for a detai led understanding

.i. , o'.- e-et, to be treated later in this report.

-:. na t'e3 'tr it a._ ,rae es to a rotat-iona ly symmetric earth

- t.e nri o a e a *o r ia 1 mc men t s of inertia are equa

A , B • 0-i

s, qenera] cae A = B can be treated in a similar way.

i env alues for Euler's Equations. 3 y 2-13) we nave

A" C-A). 0

A:. - ,C-A> - = 0 , i10-2

0ttt 15 the maximum (polar) moment of inertia, and

010-

h e ia m um po I r omen of iner ia n



wricn is the ins t ,-ntaneous rutat nfn vrC*Kh r' trr'2 .

oV- f e S y s t er 1c pa1 .es t r' .d f C: I-

note a, UK;ua by x . o- r y

As in 3- 1 we put

0

,.nere represents a constant value for the average -bee'!

rotation and - are very small as conpared d 't

tnat their, squares an d higher-order power; con be negl.e,.

Thus we may pu t - tue f rst two eoua anc .

110-2), so that E ler's equati on s become 1inear:

'" + -E 
'  

= 0 ,

, = .= 0 ,10-50

,where

C A

A

is the Euler frequency (2-1. , 'we are ., i t. oo inq at t e

problem of sec. 2 from a somewhat 4ifferent anqle.,

As before, it will be conen ent to use comlex uzit e

We put

. :, ' - '7

.2J



n S ta n c, + 0 i C n e r, t n ose s u ,

I n 31 7i<'flnfTl' D tor flCn:

... p'; &, q enfre'' encj 'pro er 'reqt eno) to cc -' -"

.. ,,;; 'll , , 0 iTe ,'snlp ex :or'ta t . -ne :o~rreSycr',

j '-,.titn are callen ro per me S
',h. i:; 1t t. on o)r 10-3> into 7i-.: c adio o, a

, " . aer, - 2 near equations for a and

,dk IrJ')-~-

I, 'Dl l I rh ' Ti ' t t < ilI 3a ' , ' I Lit O.2 o 1 0 K * 1 ' t ' ' - -. - : * ] ] " -

I i " i ..I *' i 1 -'1 I i = f , .... i - , ,.,_ ,. .-,.. . ..



Shs is a very imDle q udr c -(f3-thorl hor i r,' ,4fl

tne s ]u tions o vious! a

C-A 0., -

c A

Tese two values consti tute the two e qenr'enUenchcs eigen~a

proper values) for Eulerian motion considered as an ei.2en')a. je

0 r 00 b e In.

For the first eigenvalue , eq. 10-10 IC

a = a and

b = const,

but otnerwise arbitrary. Thus also

: : = .. . . oost.. ' - 4 .

which gives an arbitra onstant incyonert ?i the iaq n a,-

velocity of rotation w ut changinq the dih rec cr of toe

rotation axis. This particular proper mo. f ro tation is ti e

a ,ia] ,nisin mode ( ASM of (Smi th , 197 ) .

yore moo rtan t is the eco n l I , ,

4--. .."- 7. .



sf ... er e E e n fr e e-.rcan f of p ola r no tio n for e

g'ig ear-t h 30s discusse( in sac. e In fact, n cw '0-0

i re b a ar i trarv and b - 0 , wni cr means tnat the an q ar

veso it, rema i n uncnarged but the rotation axis undergQoes a

pe'od (Ii moti n a o rd i ng to

r U is equivalent to (2-16 In tne terminology of Smit

n9U7. ti s proper mode is Chandler wobble CW , Euierian

.oti on beina Ciandler motion for a rigid earth and "wobble"

c-esn a synonym r" pol r mot i on

Ligenvaiues for Spatial Position. The integration s

e s eqtations 'iveS .. ,., , which ieFine tne pos ti 

ne rotation axis with respect to a body-fixed .coordira e

em. .ne position of the rotation axis it h respect t ar,

ertiii system -- that is, its orientation as defined, e.g.

ne Euler angles , ,. -- requires anotner integraticr,.

, , nave s reel heore cf (ur-4). Let us see now this a fects 

i e neiIva ic O .

noe nler o re I ate the body f rame t 3o t'ne in-

s'ster o For the present p u'ose i t wil 1 be more

lri nienta to relate the hodv-f xed tern xxx to aro tne-

cotafl lnr s/stem x x which is connected to the inert-a"

,tm K i presoribed simple way If f urtoermore "
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system x. is close to the body sy tein x , tnien the rotation

from one system to the other- cin be effected by an "infin t e-

simal rotation" described by smaII quanti tie s .,., - ,

rather than by the Euler angles which can be large.

For the x , axis we take a constant direction

in inertial space which is close to the figure axi s x

this is possible since the x axis has an almost constant

direction. Let the system x x x rotate with respect to

the inertial system with constant angular velocity , such

toat the axes x. and x never deviate mucn from their uni-

form!y rotatino counterparts x and x

Thus the system x, x''x. is indeed related to tre

inertial system XX X in a prescribed simple way and can

equally well be used as a reference for the motion of the

body in space.

In the auxiliary system x its rotation vector

with respect to inertial space has, by ts definition, the

components

~0
0 (10-16)

Since the deviation of the frame x from the system

x is small, the transformation from one to the othe," can

be e fected by a rotation matrix that is clo ,e to the. unit

x " )x (T1+-17



IC

i f the components of the vecor' x an x represent

the coordinates (f the same point in tne respective systems.

The small matrix , representing an "infinitesimal

rotation , is sew-symmetric and may be expressed as

. 10 0-18

0

Introducinq the vector

K10-19

we may write 10-17) also in the form

X = X x 10-20

whe re the cross denotes the vector product as usual

Eq. 110-20) holds for any vector and may be used to

transform vectors from the x to the x. system. In particular

we have

10-21

h, ,art h actual instantaneous rotation vector;

* -. - ~ --
. . .. ... .. i I~ . . ... .... ..... . _ .... , ...AIR ... . .. i~r
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it has, in the body frame , tie cuinporine n

entering in Euler's equations (10-2). The vector

comprises the components of the same vector in the systoem

x _ it should therefore not be confused qitn the vector
S(10-16).

In fact, we have

+ e '1 -22
£0 1_

This can be seen in the following way, Cunsider- a point at

rest in the body frame so that x = const. Then the differ-

entiation of (10-20) gives

0 = X- × x xx

Since the vector is very small ( "infini tesima

we shall consistently neglect second and higher powers of it,

retaining only linear terms. Then the last term of (10-13 is

readily seen to be of second order and will be neglected. Thus

the last equation becomes

x 10-2>

The comparison of (10-23) with (2-3) shows that

is the angular velocity vector of the rotation of the system

x with respect to the system x . Since the vector KIO-I.>

describes the rotation of x with respect to the inertial

system, the sum of these two rotation vectors gives the rotat on



of tie ho ,,. frame witn respect t ne r taer IS. systei, n a

tne ear tn's actuaI rotation vector. n s proves 1 -22),

The combination of (10-21) and (10-223 now yields

+ 1 . .. 0-241

as usual up to secand-order terms. In terms of components

this is

- , 0 2

Let us now substitute these expressiors in Euler's

equations (10-5). The result is

'" -'E '; + '" " 1" ' 0 ,

K + ( - ' ' '.. 0 , (10-263

E& E 0

This is again a system of homogeneous ,inear different-3

equations wi th constant coefficients, which again can De simol-

fied by using complex quantities. Putting

+ iA (10-2-



O 
1

we get

w i(.: E w + . w 0
•. 10 - U 5

90

The solution will again have exponential form:

w = e , :-e , 10-?9

and the substitution into (10-2P) gives

E + 0

or

+ = 0, i0-30

-0

The condition of solution is the vanishing of the determinant,

giving the equation

2 - 0 ( 10-31

whose roots are
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- 0 , i10-2

CA '10-32:
C A

A

- I 10-3

The first twvo roots are the same as in the case of Euler's

equations, namely 110-12) and (10-13), defining the axial spin

mode 'ASM, and Chandler wobble (CW), respectively.

Now the third eigenvalue is - -,- The corresponding

proper mode is by (10-29)

e , = 0 , {10-35,

,;ahereas { 10-1r)) gi ~es fw - = . only the triviai solution

a = 0 = b , so that by (10-7) and (10-9)

In this node, therefore, the rotation axis within the body

(as described b, ,. ,. remains unchanged, as well as tne

speed )f rotation, but there i- a nonvanishing w , that is,

and differ from zero, which corresponds to a tilt of

tne rotation 3xis in space.

This the tilt-over mode (TOM) of (Smith, 1977). It

co r,'e ponds to a tilt of the whole earth 1 a,ith tne rotation

axis invariably fixed to it) in space, so that the eartn

rotates with the same speed around a slightly different axis.

linA&
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It follows that the TOM does not aff -Lt pular -iotion

(the axis within the earth does not change) hut af ects nu-

tation (the axis changes periodically ir, spa(e dcc jrd1nq tP *

(10-35)). It is thus clear that the TOM does not snow up in

Euler's equation but appears only in the equations (i0-26;

describing spatial orientation.

Since any body (regardless of it- internal constitu-

tion) freely rotating around a certain axis, can also rotate

if the axis (with the body invariably attacned tol is tiltec

in space, the TOM must exist for an arbitrary body, rigid,

elastic, liquid, even inhomogeneous. For a fluid earth model

and models with a liquid core, this mode has been pointed out

already by Poincar !'1910, pp. 497, 508, 513).

These proper modes, especially CW and TOM, will play

a basic role in the following sections.



1>.. A L_>AT>N TO] NUTATION AND POLAR MOTION

Tne eilenvaIue theory described in the preced'ing section

a1',Dows an elegant treatment of precession and nutation. ae

snall apply metnods outlined by Smith (1977' and eltendec /

Wah," ( -)79, 1930 .

We are usina the same 'wo coordinate systems as In

,ec. 1 • xx x. is the body-fixed system of principa' axes

of inertia, arnd x1 x: x is the unIforml Y rotating auxi -

ary system. Tne two systems are related by

X x i x -- X i x 1 i

7 .) terms of second order in as usual ). The vector

aescribes tne infinitesimal rotation by which our two systems

cIi Fer .

The rotation of the earth is descriaed by

( t

a, veto t rf r to the system x By "10-16' and i -?

ht n

th natn O4'r

... ... -1-3



e being the unit vent or uf t-.

Since v- ao nt (unsdar h, . n tou ,ocon:d rA -,ott F .

, e nave . - that 1 vv e , j reiao'd ( ue ix r-

mode, AS' I, see sec. 10). Thus

: . ] "-2

0

Complex notation will again be convenient. We put

using as a symbol for the quanti ty trot n a deqotr-

by w in (10-27".

We sihal use this ccmplex notation simul taneousl

three-dimensional vector notation. We put

e: = ie11-6

that is, the number i represents rotation around the X.

axis by the angle of -T/2 ; e and e denote the unit ve -

tors of the x ) and x axes. Thus, 1 can simply bc

interpreted as a rotation matrix; of. (Duschek and Hochrainer,

1961, p. 222).

This is the only convention needed; everything else

follows automatically. In particular,

-- | Ii i l , i . . . , a I . -_k...



.- es C cf orn c t 1 n be twee e n m e c n fOi ) - n

t ne .co rrespond tc: vector (11-42 . n a- , - ,

. e e - e - + .

dentica to 11-4,. A relation of the form 7- nol o ,S

any vector which has no component a)ong tne K axis e

shaIj a wa's use to)e same letter for tw o quoti at es reatec

in this way: toe vector is underlined, the correspodlng

complex number is not underlined.

Assume now to be an exponential

as in 10-29 , and beinc constant compiet rumbers. Then

tnat di fferentiation I ' equivalent to mJl io 1 cation b1

1a fact f basic usefulness, well known from spectra] ana v s o

t hev ;- i r ,i a i n al so hold , for vec t or .

y ." . . . .... ... I " ... " -



N OW the retat ion veltor (1-i

C .e . i . -

- is is the act3 instantaneous r ' l :n vf- ar

dinic unl t vector

,ep'esernts the flnt]t~r~rle,:J, ]t::
) '  

l:. Zr " ",..

vector s e

eC t h ' s r'- > ''

s s tem w e i :

Now the vector jroduct

-Ewa,- ..

rn'S i i m di t ] . - fi d U<I~nq : -
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0 1 1 -- 2 01)

and e is (11-11). Thus (11-19) becomes

H = Co+ i (a + )Co 9(11-2 1

or

H = C ,2e 3 + iA(oj + ) .(11-22)

This is in the body frame. in the x. system we have by

H = H + xH (11-23)

To first order, by (11-15),

ox H = 9 C 2 e3  iCo . 11-24)

From the last three equations there follows

H= CQe 3 + i(Aa + AQ C2 )

= C.Qe 3 + i A (a - OE7 611-25)

using the Euler frequency (10-6). The corresponding unit vector

f inal ly is
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e = e3 + i A(,- E) (11-26)-e H

Relation between e and torque L The infinitesimal

rotation 9 can easily be related to the torque L of the

lunisolar attraction. The basic equation is

H + ,,o _ x , (11-27)

all quantities referring to the x. system rotating with uni-

form velocity =_. , = e3
Deriving (11-25) with respect to time gives

H- = i A o - ) E -A j(. - 7 E

using (11-11), and

H HO

= iA (, - I.)e2 ,

= -iAe( - ,E )K' e

= -A :(.; - :E <

using (11-15). Thus (11-27) becomes

-A(,, + )(, -L (is1-2=,

We assume L to have the form

-6
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L

L = = Le (11-29

where

L =L + iL- 11-30

as before, cf. (3-15), and L is an exponential

L = 3eit+Y (i-31

Then the complex numbers 8 and L are related by

SL (11-32
A(.g+ ) (j -aE)

This is equivalent to

I Ii L (11-33)

as is readily verified by computation.

This latter form shows very well the resonance at the

proper frequencies -. and a : if the external moment L

has a frequercy - equal to either of the two proper frequen-

cies, then the expression (11-33) will have a singularity. For

lunisolar effects, whose frequencies are grouped around the si-

dereal frequency , the relevant resonance is at = -. ,
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which gives precession; cf. sec. 7, especially eq. (7-14)

(no lunisolar effect would have a frequency j E).

Eq. (11-32) or (11-33) provide the possibility to

express all our quantities in terms of the external torque

L . For instance, (11-25) and (11-32) give

H' = Ce 3  iL el (11-34)
' +

which clearly shows the resonance at = - This shows

the importance of the "tilt-over mode" (TOM, cf. sec. 10)

for precession and nutation.

Nutation and polar motion. Nutation is the periodic

motion of any of the three axes: angular momentum axis H ,

figure axis F , rotation axis R , with respect to a fixed

reference axis for which it is natrir3l to take the axis x 3

that is fixed in space; it has the unit vector e 3  Thus

the nutation vector n of any of these is obtained from the

corresponding unit vector e by subtracting e 3

R = e R - e

n. = eF - e , (11-35)

nt, = ell - e

the unit vectors being given by (11-13), (11-16), and (11-26).

iJsing the complex number n corresponding to the vector n
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by

n = ne, , (11-36)

we thus get

n
fl =

R

n = -ie , ( 1-37

n . A(O- E )

C.2

Polar motion is treated in the same way. It represents

motion around the figure axis e F  Therefore, polar motion

is defined by the vectors

RR e R-eF£R-: R -Fe

(11-38)
as = e - eF

in analogy to (11-35) (of course, pF = 0). The expressions

(11-13), (11-16), and (11-26) give f',r the corresponding com-

plex numbers

(11-39

P16.

P____ : 4
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Their expression in terms of L by (11-32),

SiL
PR= A (cE

(11-39)
iL

PH = L

;rows resonance only at the Chandler (or rather Euler) fre-

quency -E , as it is natural for polar motion. The lunisolar

(tidally-induced) effect on polar motion is not resonant.

These relations are illustrated in Fig. 11.1, in which

the oriqin 0 corresponds to the x< axis.

R 
n R = OR pR = FR

n = OF

I n H= OH P = FH

/

/
t /

FIGURE 11.1 Forced nutation and polar motion of the

rotation axis R, the figure axis F, and

the angular momentum axis H



95

Comparison with previous formulas. In (5-13) we have
put

L = (C - B.e ( (11-40)

We write this as

L T L. (11-41)

wi th

L. = (C - A)2 2B8e i( J % (11-42
J ]

We shall apply the preceding results to each frequency separa-

tely and only at the end sum over all frequencies.

Thus we shall identify L in (11-31) with an L as
3

given by (11-42). The comparison shows that

= -,w. , (11-43)

of course, y = -[. but this we shall not need.

Then (11-391) gives

iL
-j

R = (j +'E)

(11-44)

i L.
P ) C': ,
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and using (11-42) and summing over j we obtain

PR Be , (11-45)
-i ]

P A-PR (11-46)

which are identical to the forced part of (5-24) and (6-11)

for a rigid earth with k = 0.

For free Eulerian motion we have

L = 0 , = ' (11-47)

Equations such as (11-32) or (11-39')give 0/0 and cannot be

used, but (11-37) and (11-39) remain valid with

e (11-48)

for the proper mode CW according to (10-29) ( is the same

as w). For free polar motion, (11-39) gives

PR = E (11-49)

and the comparison with (5-24) shows that

+ Ii" t Em~e E = i - _ ,_
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so that

1= i me i E t  (1i-50)
+ ET
,+ E

is the relation between free polar motion m,, and the corre-

sponding infinitesimal rotation . With this , the second

equation of (11-39) gives the free term in (6-11) with k 0.

Nutation is handled in the same way. With (11-43), eqs

(11-37) give

w.

n = -iR,j '7i J

nF~ = -i ,11-51)

A(, +a )= j E

where, by (11-32),

L
= - ( 11-52)

AAw.i W +)

since

aT + Q= -w + = -w.
J J



9 (3

whe re

, = .. (11-53,

as usual. Substitution of (11-42) and summation over j gives

n = B ,e e 4

J e' i , (11-54

- j E

,£: ;e~ -. ~
n , B e-

3 9 E

To these forced terms, the corresponding free terms (11-37),

with = and from (11-50), must be added. Then the com-

parison with (7-14), (8-7), and (8-11) shows that

+ isin = -e (11-55

for an,/ of the axes R, F, or H ; the geometry of this cor-

respondence between polar motion and nutation is the same as

in (8-9).

The factor -i expresses a rotation by -90c (or +270 '

which has no deeper significance as in characterizes only the

choice of coordinate axes. The factor et expresses, of

course, the uniform rotation of the X: x1 x system, to

which n refers, with respect to the inertial system, to which
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and - refer.

In fact, the present method offers the simplest an(

most direct derivation of polar motion arid nutation for a

rigid earth. For this particular case we get, in a consicer-

ably simpler way, the same results as with the approach ,f

secs. 3 through S. This latter approach, however, holds

for an elastic earth and thus is more general.

In sec. 13 we shall extend the present method to

an earth model with a liquid core.
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1'. POINCARE'S LIQUID CORE >,ODEL

Neither the rigid nor the elastic earth model are capaDne

of adequately describing earth tides and nutation. Tne effec*

of the 1 iquid core must be taken into account.

The oscillations of a rotating ellipsoidal snell cotain-

ing a homogeneous liquid were first treated simultaneously

ouozky and y Houqh '95), The most elegant treatment is

bv Poincar (P10). His paper is so frequently used anc :,ot&e

that it has become customary to speak of the Poincar mooe,.

Since Poincarbs method is treated in easily access nice

texthooks (L.imb, 1932, p. 724; Melchior, 1978, p. 122) we

snal! here only describe it in general terms, ratner f ,san de-

rivinq it step by step.

Let us refer the ellipsoidal shell to principa2 a~es

xy , then t ie inner ellipsoidal surface, which encloses tne

lisuid-filled cavir.y, has the equation

x + Z__

By the ri ange of vari al es

71

y,,:z1- , b -- c 12- Z

this iurf,, io transformed into the unit sphere

v 12-
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Poincar considers a motion of the liquid such that, by the

transformation (12-2), it is transformed into a rotation of

the sphere (12-3). Thus, by (2-3), the velocity in the auxi-

liary x'y'z' system is

"' x = .x'- Z (12-4)

y - X

if the corresponding rotation vector is . Going back to

the real system xyz by(12.2) and adding the actual rotation

we obtain

a a
S c"/, F- 3 Y + Z j- Y.Y

b b- X "X'z + ,3x - z , (12- 5

c c
-5= ly - c x  + - 1y - x

Here represents the rotation of the earth with respect

to the inertial system, and expresses a rotation of the f'uil

core with respect to the earth. (The latter, of course, is a

strict rotation only after the formal transformation (12-2) to tnei

auxiliary x'y'z' system, but for a nearly spherical earth,

this holds approximately also in the actual xyz system.)
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The motion described by the velocity components (12-5)

represents the simplest possible motion of an ideal fluid.

Fhe velocity is linear in the coordinates x,y,z . This is

juite natural, cunsidering that such a linear dependence

somenow corresponds to a quadratic potential, and the luni-

solar potential i; the usual treatment (sec.1) is indeed qua-

dratic, namely a spherical harmonic of second degree.

The kinetic energy T is found by summing 'i.e. inte-

. ra ing the square of the velocity over all mass elements

2T + dm

Tne substitution of (12-5) and integration over the whole

earth (liquid core plus ellipsoidal shell) yields

2T =A + B + C_ +

A,-. + B + C

+ 2F ., - + 2G,. + 2H, ,, (12-6)

Here A,B,C (re the principal moments of inertia for the

whole body, and
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__ 2A MeC b:- + ) , F bc

B M - (c + a) , = 2 M ca 12-7)
C

1 2
C = Mc(a + b2) , H = SM ab

M denotinq the total mass of the liquid core.
C

The equations of motion may be made plausible in the

following way. Assume that the liquid core is absent and the

earth is a simple rigid body. Then the equations of motion may

be written

d ;T T aT-T- - + = L, (12-3

plus two other equations resulting from cyclic permutation of

subscripts. In fact, in this limiting case we have A B-

= C = F = G = H = 0 , and the substitution of (12-6) intoC

(12-8) immediately gives Euler's equations (2-12).

It will now be assumed that (12-8) also holds for the

general case of a liquid core. Since the vector _ plays i

role analogous to , ,we may guess that the following equaticMs

also hold:

d T ;T BTd 3T = 0 (12-9)
dt >"1A
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and two cyclically permuted equations. The change in sign in

these two equations are due to the fact that . , expressing

rotation of the core with respect to the body, has a similar

character as -, , which describes rotation of inertial space

with respect to the body. On the right-hand side of (12-9)

there is zero since external forces do not affect the relative

motion of the core.

A rigorous derivation of (12-8) even in tne presence

of a liquid core is not difficult since it is simply equiva-

lent to the moment equation (2-2); cf. (Lamb, 1932, p. 724).

On the other hand, (12-9) may be derived using Helmholtz'

vorticity equation, which means going rather deep into fluid

mechanics; cf. (Lamb, 1932, p. 725) or (Melchior, 1978, p.124).

Our plausibility reasoning using arguments of symmetry

between - and , can, however, be made rigorous. This has

been done already by Poincar (1910, p. 484), using a theorem

on dynamical systems with groups of symmetry, earlier given

also by Poincar (1901). This very elegant theorem is unfortu-

nately not found in standard treatises on analytical mechanics,

with the exception of (Whittaker , 1937, p. 43), (Loomis and

Sternberg, 1)63, p. 541), and (Abraham and Marsden, 1978, sec.

4.4), where similar theorems are presented; cf. also the re-

mark in (Klein arid Sommerfeld, 1910, p. 162).

From (12-8) and (12-9), using (12-6), we derive immedia-
t-el y

(, + F..:) - . 3 (B., + G:) + '.(C + H-<) = L

- - ... .. __. ._____



d_-B + G' ) - , (C., - H. ) . A,. F. ) _ ,

( + Hx ) - (A + F,,) ;- B ,

d F + A + zG, +- B~)- C.<

d_
G + B x2) + ,(Hw 3  + , - F, + 4,

,12-11

d+ Ccx ) + (F + A,.,) - .

For an ellipsoid of revolution we have

a B , A = B A B , F = G 12-12

and furthermore, by (12-7),

H = Cc 12-i 3

Then the third equations of (12-10) and (12-11) give

d(C ' ,3+ Cox3) + F(' -,. - w-x ) L ,
12-14

-~ A.k



1{)r,

12- 1- ,
J -

- C. ) + F- = 0

A; u-,ual, we disregard L, which causes variation of rotational

,peed hut nut polar motion (sec. 3). Thus we put L = 0 and

suDtract Doth ejuations (12-14). The result is (the dot deno-

tes ddt -

0 , .. const. = . (12-15

nen tne ,econd elujuation of (12-14) becomes

C ". + FK . ) =0 (12-16)

N, ( nave a si m lar small order of magnitude as

a 11 J f) tnat is a quantity cf second order,

.-in w, : ,r'iY - al 1 -onsistently neglect in the sequel, as we did

n tn P eced inrl se,:tions . To this ac-uracv, (12-16) reduces to

- 0 const. (12-17)

1 2-13

'K ng (12-K), (12-1j), 12-15), and (12-18), we may

,-rite t uie fir-.t twi: equations of (12-10) and (12-11) in tne

Zip



107

A- , - (C- A).. F.

(12-19
A-* - (C A) + r L.

F: + Ac:' C , 0,

(12-20

F-, + A,:"- + C 1. = 0

Again, complex notation will be convenient. We put

U = + 1i ,

v = , + i . , 12-21

L L1  + iL

so that (12-19) and (12-20) take the simple form:

AO + FH - i(C - A) u + iF,v = L

12-22)

FO + A0_' + i Cc v = 0

These formulas generalize Euler's equations to the case of a

liquid core.

Eigenvalue problem. We proceed similarly as in sec. 10.

We put

u = -e , v = :e (12-23)

_ _ _ _ _ _ A
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and

L =0

Then (12-22) reduces to

A- + F> - A - + F- I  0

(12-241

F- + A - + 0

usi na

I C - A 12-25E = P - -

as usual. The determinant must be zero:

A F ( , +,

F, A- + C

wn , h qi es

A( - ")(A. C:,) - F.( + ") 0 12-26

Wi th

F 2A.C, - C-" C,.(2A, - Co) 12-27

Aw
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which follows from (12-7), this becomes

A E (Ac., + Cc Cc(2AC  - C_)U + ) . ( -2:

We now introduce

C -A
__ c (12-29jC

the dynamical ellipticity of the core. By (12-7) this is also

equal to the core's geometric flattening (apart from negligible

second-order terms):

a" - c' (a-c)(a+c) a- c + 0( ) , 12 -30

2a2  2a 2  a

0(.2) denoting terms of order c: as usual.

Then

C = A (I + () , 12-31)
C C

and

F2  = C (2A - C ) = A 2(1 + F)( -
C C C C

= A 2(1 - £2) = A (12-32)
C C
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since terms of second order in - will now consistently De

neglected.

Thus (12-28) becomes

AA (, - ,E ) + + A ) +

or

A: - (C A)i( + * + ) = A I, + ) 12-33)

The introduction of the principal moments of inertia for the

mantle

A A - A , C C - C , 12-34

allows a reduction to the form

?A - (C - A)'( + A,;) = -A - (C A).. .: . i1-35

This equation is solved by successive approximations.

We first put - = 0 . Then the right-hand side is zero, and

the equation has the two roots

C - A
=CA

Am (12-36

_Ala
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As a second approximation we put

J3 + 7 - , + ( 2-37

For 3 we have

A : C - A): A ' + A - - C - A : ,

so that (12-35) becomes

mA (.+ A.

Now E is the core flattening (12-29). Both , by (12-36

and 7_ , by (12-25), have the same order of magnitude as

Thus the right-hand side has actually the order of and

can be neglected. Hence, to our usual linear approximation

we have -7 = 0 and

C A 12-A1=, - # L.( 12-3S)

M

This is the frequency of the Chandler wobble (CW) for the
present case. It differs from CW for the rigid body, (10-6),

by the replacement of A in the denominator by A , the

principal moment of inertia for the mantle.

A new feature is brought into the picture by the first

root. For : we have



2

so tnat ( 1 2 - 3 5 ) becomes

A - (C - A)-c = - A, -(C A

or . i tn 12- 36 ,

A_ + - A): = A + C -A),

w it.n the sol uti on

C

4 C -A (12-39)

Now, using 112-31) and (12-34)

A + C - A =C A =C -C (I-)

C C + 0( C + 0(e)

Since is multiplied by in (12-37), the term 0(-)

is multiplied with ,. to give a negligible second-order term.

Thus (12-39) becomes

C-( 
12-40)

ML,
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and

= -- (1 C - - 12-41

This root has no equivalent in the rigid-body rota*ion.

In particular, it is not the direct equivalert of the t; ' -

over mode although it is numerically very close. We snail

come back to this question at the end of the present section.

To give an idea of the order of magnitude, we take

(Melchior, 1978, pp. 129)

A Cc -0.11 . c

A C
12-42

-

Then

C 17-- = I - C /C 1 . 12

C 1.12
m C

C 1 .12 0 .0028

so that

= - 1.0028 . (12-43)

bib"-



Th i i is the eigenvai u e for t ne n e ry n a t re e

b~ol e "ND F~ a c cord injg to toe terminology of 'Smi th, 19 7
I~ oud rep,,r est2n t a d iu rnal1 period'

Tn e Co nip orison of the present t re atmne nt withn sec. 13

shiows one compa rablIe ( though no t numerically equal) eigen-

vol i , naminely t he C W valIue .Our present _,for toe

N A h a s n o eq(IUi v aIe nt i n tne case of Euler's eqjations;

jrn toe otner nand, we have not yet obtained tne eigenvaloje

Ccorrespondinq to tne axial spin mode AOSM) . its pnys'ca',

;Interpretation -- otation about the sonie axis wito, a

sli gotl V different speed of rotation -- snows that i- ijust

n)e ,uite general and niot irestricted to a solid body. In Fact,

we na~it also in toe Poi ncar model . The equation K 12-1::

no;s the exponencial solution

w n n i

0 r(12-44)



as another eiaenvaiue. This 'AM v I U /i;nC. t

in sec. 10. In the present proo em, i t ui e 0 i

also from '12-171.

Spatial position. So far, our _x)os i ti on ri a -

responded to the treatment of Ei er 's ef al tiIon it -n r " ,

so that we have not yet obtai ned the tilt-over iiodc <'

which should, however, occur in the present model ; we9 ,

for similar physical reasons as the ASM

We therefore proceed as in sec. 10, considerina

spatial position. Since the mantle is rigid, the reason nq

leading from (10-17) to (10-25) holds un,-hanned ,r the

Poincar model, and the first two equations of i0-25 clan

be combined in complex notation to give

u = ,4 + i--

using (10-27) and (12-21). The substitution of this into

(12-22), and of the third equation of (10-25, into (12-175

gi ves

A(w + i'w) - i(C - A), w + i..w) + F(v t I .v L

(12-46
F(w + i w) + A v + iC -v = 0

C

= 0

The exponential form (proportional to e ") for .- v, and

a. leads, as usual, to a system of homoqeneous linear equa-

tions (if we put L = 0). The condition of vanishing determi-

d- !
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na;it may be brought to the form

A • A C) - F ( +

12- 7

Te solutions of this equation are

- 0 ASM)

C A(CW

(12-48
C-) NDFW)

S- (TOM)

For and this is immediately obvious, and and

are seen to be the same as (12-38) and (12-41) by noting

sinat the expression between parentheses is identical to (12-2E.

Although the modes TOM and NDFW are conceptually

completely different, their numerical closeness is so striking

that it is tempting to look for" a physical interoretation of

N DFPi in terms of TOM. A hint is provided by notina tnat for

a ssr ictly spherical core, with I = 0 , we have - - -

Thus, for = 0 , NDFW coincides with TOM.

Now the tilt-over mode characterizes a tilt of the body

with respect to some external reference. In TOM in the

o3roper sense, such an external reference is inertial space. An

ideally fluid spherical core is mechanically completely inde-

oendent from the mntle ("decoupled") since, in the case of
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spherical symmetry, a coupling could only be effected by

drag of friction, which is absent with an ideal fluid. Thus

the core, being independent of the mantle, can serve as an

external referarce for TOM into which thus NDFW degenerates

for a spherical core.

This decoupling is no longer true if the core is ellip-

tical. Due to the unsymmetry, there is now a mechanical

coupling : the inertia of the core resists a rotation of the

shell. Thus we have an inertial coupling, or Poincar& coupli ,

between core and shell which is zero for , = 0 and can be

expected to be proportional to c by small - This is indeed

borne out by (12-48) : the deviation of , from 3. is

proportional to c

A detailed study of the mechanical situation from a

somewhat different angle is found in (Toomre, 1974).

Proper modes are also called resonant. The presence

of two different but almost equal eigenvalues , and -

causes a significant deviation of the rotational behavior of

an earth with a liquid core from that of a rigid body, which

by Poincar (1910) has been called double resonance.

L 7-
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13. LIQUID CORE EFFECTS ON POLAR MOTION AND NUTATION

Let us first introduce a convenient terminology:

u = + i ... ............... body-referred rotation,

v = - ... ............... core rotation,

w .......... space rotation.

In fact, ( , , ) express the position of the actual rotation

axis with respect to tne body-fixed system of figure axes;

(,: , .) are a measure of the rotation of the core with re-

spect to this body frame; and (i , ) characterize the rota-

tion of the body with respect to inertial space. The quantity
+ i_ has been denoted by in secs. 10 and 11 and by

w in sec. 12; we shall continue to use this notation.

The body-referred rotation u characterizes polar motion.

In fact, the complex number m describing polar motion is

related to u by

u= m; 13-1)

cf. (3-13) and '3-15).

The quantity u is a solution of the basic equation

'12-22). The eigenvalues of this equation have been found to

be (12-38),

C A- - --- I(13-2 )

. . . .. ... -' .... • ' ' _.A



for CW, and

(1 C

for NDFW.

Thus the general free solution (without external forces3

has the form

u = e + i-e I -4)

The first term constitutes the usual Chandler wobble, tne

second term is the nearly diurnal free wobble. The principal

contribution to polar motion, of course, comes from CW, and

it is an open question whether, for the real earth, the NDFW

has a coefficient -L- which is significantly large to be

observable at present (Rochester et al., 1974; Yatskiv, 1980).

Practically much more important is the effect of the

NDFW on forced motion. Consider the inhomogeneous equation

(12-22), the torque L being given by the expnnential !11-3i

L = e i (rt+Y) , (13-5

which represents a typical term in an expansion such as (5-12)

with = , We put

3e y = i K , L i Ke ''
t  13-6

and

A"



u Ue v Ve 1  13-7

The substitution into (12-22) with F A by (12-32), tnen

leads to

iAU + iA V i C A) .U + iA V = iK

iA -U + iA V + iC V 0

or

A, - ( A) U + A (' + )V = K
(" (13-3 ,

A ! (A, + C )V 0

The solution by means of determinants gives

A - + C ,
K , 13-9

A

V c K (13-10
A

where is the determinant

= A, (C - A),(A + C r) A : + :) 13-11
C C

Of principal interest is U which gives polar motion.

Let us compare U with the value U which would correspond

to the same moment K if the earth were rigid. Then Euler's

A"-



equations or simply (13-8) for A = 0 ' ive

K
Aj - (C-A)2

From (13-9), (13-11), and (13-12) we thus get

A- (C-A);< (Ac - + C.. A( +

A - ( C -A ) ." ( A c l + C )
u a A +CA : ( ) C

-1- A, 13-13

[Ac - (C-A)](A + C C)C C

This can also be brought into the form

I0 - Acf- 1 13- 14

A (, - E (,' + ; +

where , is (12-25) as usual.E

If we change over to our usual notation for polar

motion, precession, and nutation, we must put

SJ (13- !1
= , - 2 = -( +

J 3

A

4.-
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Then (13-14), on putting q U /1 , becomes

L-I
q - - 1-- , r13-16

U)
UA + E (.

identical to eq. (6-43) of (Melchior, 1978, p. 128);

note that Melchior's I has opposite sign.

Thus the amplitudes oi: forced polar motion, computed

for a rigid eartnh, must be multiplied by this factor to get

the corresponding amplitudes for Poincar~s mode]. Later in

this section we shall see that the factor U/Us also holds

for the amplitudes of nutation of rotation and figure axes

(the nutation of the angular momentum axis is the same as for

a rigid earth).

Numerical values are seen from the following table

which is taken from (Melchior, 1978, p. 129).

q = UIU

Precess ion 0 1

Principal nutation +,)/6800 0.994

(18.7 years) -,.,/6800 1.007

Annual nutation + ,/365 3.458

-J/365 I . 062

Semiannual nutation -/183 1.260

- 133 1.083



Fortnigntly nuti+ion + Z i'.

This faCtu, tnus rema n.; r, ir,,ess' 0 . :,'

becomes t r the pro er f e'u- c,, urnd c

:e snown later.

A ngular momentjm 3-nd t or 'e. , tr te ' 

is easily extended to the Po i n aro m ude n,-, * he jn. i

stil1 riqid in this mode a ni .he mde a,. 3 y imuir0

Therefore tne .inemat,cs , , 11-ic , ,'uilll , un nl-r1.,

What changes, is the dfnam,

The angular mnomer Il expr '. ion .- i! t now *e:;1 c .

Dy

H C. D

where C s given b'y (n-1- nd D is the matri

D = 0 G 0 1- "

0 0 H

The quantity D is an aditinnal angular mo mentum duc to

the motion of the 1 , +uid ,core Lamb ,4 eq.

__ _ _ __,- .. ....
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'In fact, the first equation of (12-22) is nothing but the

aicequation H H L referred to body axes.)

S irice I - 0 by ( 12 -18) and F G i n vi ew of ro-

ta t ionalI s vmme try , we ha ve

F 0 F

D,2 F i F.

U 0 H 00

F, e +F~ e F ~e + F, ie

t Fve

a I 2 1 7 , * r -

-1 d Y ,

oilY-
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A A
e e + _ +1- ( v

- C

it is indeed a unit vector si nc e I tfers from , n

bv small terms o second order in and v

To find tne relation between afld t e nglqn Jiar n j-

mentum L , w e may proceed as fo Ilows. jqa.n 1-45

exoonent a s

u e ..

e co me

sU

, -= ' ' ,,, - _

"- °'5 t



Thus 'Dy 11 -32),

L
W iq = q , i3-25j

A( +-

Tni is the desired relation between and L It snows

tnat 're factor q , eq. (13-16) which converts u from

.ne riqid case to the Poincar model, likewise converts

it culd appear that w becomes singular if

tn:)' qin tnis is not an eigenvalue. Such a singularity is

t -oal , however, since IJ = 0 for =- This becomes

ear, e expreSs u by 13-9) ; by the aid of ' 13-6

2? n ; occomes

A *±C
- - .. . . . i-- 2

j

I- - T'I,' r. (an obviously be written in tne fo-r

_ V I i j e a n (I

-___ __ - .- 1---~-- - -



and ( 13-2-1) ives

A • + C ,
w Lw . ..... _ _ -- - -- - -- - L -

A MAc( - . (+ _ - . ) • . ,

An expansion into partial fract ions i e'; exuression; , tn

form

u +

13- 30

w -++

Nnere t and .: are constants and the ei genval .es,

- are given by (12-4 ). Thus, polar motion u is reso ror

,or CW and NDFW , and space rotation w i resonant 'er

CW , NDFW , and TOM , as it should bp.

The relation between H and L is found as fol cws.

With

.e = we, : +

by 2 we may transform 1 2 c , wc

.1 Ce + - ' .v .1-3<

-- -"



u:,! t, :r. ] i o ao, unt 1 -6' arc 13-7,. o, 3e .- :ter

, i 1r-iu and 13-333 ann notint F = , . get

n - - 3

,..' t on as r a rDo o n 5i Is con-

r r tai, ehat on te t eeen anqu ar -

, ,; . t ,Ju L from the interna struc ure of

d, .- - :,n, qii jd; remark of sec.

o : 1 1, d a r not 0n. Now It s t r a g n tf 0 r a-

-ne -r';:JI3i. for precession "1-37 and poar ot'. ,

>t-'+0r' ; lt case. Since tte first two reatios

lema ra, tney continue to hold

- - ;'

il,' - ' ro tat1l of tne rh otation a is R ana oF tne
f,' pr' ,e t , of course, e I ffers from the

v.. I j , f3 tora cc ' 13 - Z... , ., w o y the factor , ac:cording to 1-



Thus the amplitudes of nutation t r tile rotation a/,i irid T' ,-

fiqure axis ci ed - f .r o in h e or re_, p o ndin q _d-bp y .

by the factor i

This is not true for the nutation of the an-ju ar nmen-

turn axis. From (13-22 and (11-31 we get

A( : :iLV A-3nH  w + -- v ,, -3

CI C

which differs from , 1 1 -3 7 ) by a tepc due to core motion.

Expressed in terms of L , we even 9c exactly the same

nutation as in the rigid body case

iLn H  = - 1 3 -3 T
C(r + I)

by (13-34).

The polar motion of the rotation axis, being purely

kinematical, remains the same as (11-39

and consequently differs from the rigid-body case by the

factor q

The polar motion of ttie angular momentum axis is dif-

ferent from (11-39,1



pa, = .. - n

A - A
-1 \1 w v 13-39

C C.

or, by (13-38)

A A,.V + v 13-40
C C

Here v obtained from (13-10), which by (13-6) and (13-7)

becomes:

A

V - L (13-41

These relations are illustrated by Fig. 13.1, which

is the extension of Fig. 11.1 to the Poincar model. It

shows that the rotation axis R is no longer close to the

annular momentum axis H

[rpe motion. in the absence of external forces, for

L - , the basic equations (12-22) have the solution:

(13-42
1 "- .0
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II

g2  W =

u R
H/

zL  F

FIGURE 13.1 Forced nutation and polar motion of the rotation

axis R , the figure axis F , and the angular

mcmentum axis H

cf. (13-4) and (12-23) The coefficients are related to

the corresponding coefficients rt. (i = 1,2) by (12-24) with1

= 7 . Since the determinant vanishes, we may take either

of the two equations of (12-24). We take the second, with

F =A
C
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A' + (A,. t C 0 -0 3

Or"

L + II + . ): = 0
13 - 44

+ (1 + )13-.0

w i t h

A> A
13-45

C C2
CC

Eqs. 13-44) are satisfied if

= ( 1 + " Y). , "i = -<  ,

13-46
, = (1 ± , ); , : = -,Km.

with arbitrary complex constants and ; this is easily

,een to be the general solution. Thus

u (1+,"e + + e

(13-47)
V -" C; -

represents the general free solution.

Important is; the order of magnitude. From (13-45) with

(13-?) and (12-42) we qet

- A L



13~

C -A C- A C -A

A A -A A 300
m

and similarly using (13-3) and (12-31)

1 1 1 + eC/Cm
1 + I +

C C,
- (1 + ) -1 (13-48;

Hence, approximately,

u = elt + O(c)ue 13t

13-49)i(I I t  
io2t

v O(c),e + ie

This shows that polar motion, (u) comes principally from CW

(frequency aj) but core motion (v) is caused mainly by NDFW

(frequency 92).

The corresponding free value of spatial rotation

is given by (13-24) where = , or , depending on the

mode. Thus from (13-47) we get



*+

e e113

_ _- ' ;e ± ,e(13-53.

S + .•, + ,

Now free nutation can be computpd by (13-35) and (13-36)

usinq (13-47) and (13-50), and free polar motion is obtained

in the same way from (13-38) and (13-40).

It is very instructive to consider the NDFW only.

Tnen, putting

e - = h (13-51

and using (13-48) and (Ii-3) we get from (13-47) and (13-50 •

u -

Cm

v (I + n )h (13-52

Cr.

We recall that the core flattening

C A1
CI

and that for the m,,mentts of inertia of core and mantle we

ha v e

A i



I

C C C- C

C C C

This shows that the ratios

C C

C I

C L
C

i2w C 1

u C

are both very large.

In particular we have for this mode by (13-38) and

(13-40)

PH A A v A A v
__=- + C - C

pR C C 2 p C C U

A A C I
c in

C C C .



he fir st term on thie right-nan o d o se to arC

can be neglected with respect to the very large second

term!. Furthermore, A .C = 1 - 0(,) Thus

PH C
-= - - "- 400 13-53

pR C

Usinq (13-3) this can also be written

PH

.... 13 -5 4

PR P +

this si nple relation permits a kinematical interpretation in

terms of body- and space-fixed cones according to Poinsot

R"ochesterr et al , 1974).

The nearly diurnal free wobble is illustrated by Fig.

13.2, which in view of (13-53) shows that the angle -t between

the angular momentum vector and the figure axis is about 400

times larger than the angle, between the rotation axis

(vector .) and the figure axis. Cf. also (Toomre, 1974;,

(Rochester et al., 1974) and (Yatskiv, 1930); Rocnester et al.

ha ve

A
(13-55;

A,,

AwL



C --d

FIGURE 13.2 The nearly-diurnal free wobble.

which differs from (13-53) only by 0(K ) which we have disre-

garded.

The same phenomenon may also be looked at from a si ignt-

ly different angle. In the absence of external forces, the

angular momentum H retains its position in space 3 the nuta-

tion of the angular momentum axis is zero

nH = 0 (13-56)

This is evident from (13-37) since the denominator differs from

zero if or -, , and the numerator is zero if L P
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.-h- " Iy j Lrrual t ,, Wt)Ol. tIIere e s ,a c rrespcr cfn

al1ta:1)n .fiq h s hat 4C, tiie, lahI er. S ,-i a n. tatiar, ra:

t? e n b1a* n ,, ose rve , wni. I a notner indica tl n tna . te..

a III I ,rjt f n N D , FW for tne earth m ut -e very sma] 11
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